JEST 2018

PART A: ONE MARK QUESTIONS

Q1. When a collection of two-level systems is in equilibrium at temperature T_{0}, the ratio of the population in the lower and upper levels is $2: 1$. When the temperature is changed to T, the ratio is $8: 1$. Then
(a) $T=2 T_{0}$
(b) $T_{0}=2 T$
(c) $T_{0}=3 T$
(d) $T_{0}=4 T$

Q2. A ball of mass m starting front rest, fails a vertical distance h before striking a vertical spring, which it compresses by a length δ. What is the spring constant of the spring? (Hint: Measure all the vertical distances from the point where the ball first touches the uncompressed spring, i.e., set this point as the origin of the vertical axis.)
(a) $\frac{2 m g}{\delta^{2}}(h+\delta)$
(b) $\frac{2 m g}{\delta^{3}}(h-\delta)$
(c) $\frac{2 m g}{\delta^{2}}(h-\delta)$
(d) $\frac{2 m g}{\delta^{2}} h$

Q3. A collection of N interacting magnetic moments, each of magnitude μ, is subjected to a magnetic field H along the z direction. Each magnetic moment has a doubly degenerate level of energy zero and two non-degenerate levels of energies $-\mu H$ and μH respectively. The collection is in thermal equilibrium at temperature T. The total energy $E(T, H)$ of the collection is
(a) $-\frac{\mu H N \sinh \left(\frac{\mu H}{k_{B} T}\right)}{1+\cosh \left(\frac{\mu H}{k_{b} T}\right)}$
(b) $-\frac{\mu H N}{2\left(1+\cosh \left(\frac{\mu H}{k_{b} T}\right)\right)}$
(c) $-\frac{\mu H N \cosh \left(\frac{\mu H}{k_{B} T}\right)}{1+\cosh \left(\frac{\mu H}{k_{b} T}\right)}$
(d) $-\mu H N \frac{\sinh \left(\frac{\mu H}{k_{B} T}\right)}{\cosh \left(\frac{\mu H}{k_{b} T}\right)}$

Q4. For which of the following conditions does the integral $\int_{0}^{1} P_{m}(x) P_{n}(x) d x$ vanish for $m \neq n$, where $P_{m}(x)$ and $P_{n}(x)$ are the Legendre polynomials of order m and n respectively?
(a) all $m, m \neq n$
(b) $m-n$ is an odd integer
(c) $m-n$ is a nonzero even integer
(d) $n=m \pm 1$

Q5. If (q, p) is a canonically conjugate pair, which of the following is not a canonically conjugate pair?
(a) $\left(q^{2}, \frac{p q^{-1}}{2}\right)$
(b) $\left(p^{2},-\frac{q p^{-1}}{2}\right)$
(c) $\left(p q^{-1},-q^{2}\right)$
(d) $\left(f(p)-\frac{q}{f^{\prime}(p)}\right)$ where $f^{\prime}(p)$ is the derivative of $f(p)$ with respect to p.

Q6. A Germanium diode is operated at a temperature of 27 degree C. The diode terminal voltage is 0.3 V when the forward current is 10 mA . What is the forward current (in mA) if the terminal voltage is 0.4 V ?
(a) 477.3
(b) 577.3
(c) 47.73
(d) 57.73

Q7. If $\psi(x)$ is an infinitely differentiable function, then $\hat{D} \psi(x)$, where the operator $\hat{D}=\exp \left(a x \frac{d}{d x}\right)$, is
(a) $\psi(x+a)$
(b) $\psi\left(a e^{a}+x\right)$
(c) $\psi\left(e^{a} x\right)$
(d) $e^{a} \psi(x)$

Q12. The Laplace transform of $\frac{(\sin (a t)-a t \cos (a t))}{\left(2 a^{3}\right)}$ is
(a) $\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$
(b) $\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$
(c) $\frac{1}{(s+a)^{2}}$
(d) $\frac{1}{\left(s^{2}+a^{2}\right)^{2}}$

Q13. Two of the eigenvalues of the matrix

$$
A=\left(\begin{array}{lll}
a & 3 & 0 \\
3 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

are 1 and -1 . What is the third eigenvalue?
(a) 2
(b) 5
(c) -2
(d) -5

Q14. In a thermodynamic process the volume of one mole of an ideal is varied as where $V=a T^{-1} a$ is a constant. The adiabatic exponent of the gas is γ. What is the amount of heat received by the gas if the temperature of the gas increases by ΔT in the process?
(a) $R \Delta T$
(b) $\frac{R \Delta T}{1-\gamma}$
(c) $\frac{R \Delta T}{2-\gamma}$
(d) $R \Delta T \frac{2-\gamma}{\gamma-1}$

Q15. $\quad \pi \int_{-\infty}^{\infty} \exp (-|x|) \delta(\sin (\pi x)) d x$, where $\delta(\ldots)$ is Dirac distribution, is
(a) 1
(b) $\frac{e+1}{e-1}$
(c) $\frac{e-1}{e+1}$
(d) $\frac{e}{e+1}$

Q16. The integral $\int_{-\infty}^{\infty} \frac{\cos x}{x^{2}+1} d x$ is
(a) $\frac{\pi}{e}$
(b) πe^{-2}
(c) π
(d) zero

Q25. An electromagnetic wave of wavelength λ is incident normally on a dielectric slab of thickness t. If K is the dielectric constant of the slab. the change in phase of the emergent wave compared with the case of propagation in the absence of the dielectric slab is
(a) $\sqrt{K}-1$
(b) 2π
(c) $\frac{2 \pi t}{\lambda}$
(d) $\frac{2 \pi t}{\lambda}(\sqrt{K}-1)$

PART B (THREE MARKS QUESTIONS)

Q1. An electronic circuit with 10000 components performs its intended function success fully with a probability 0.99 if there are no faulty components in the circuit. The probability that there are faulty components is 0.05 . if there are faulty components, the circuit perform successfully with a probability 0.3 . The probability that the circuit performs successfully is $\frac{x}{10000}$. What is x ?

Q2. If an abelian group is constructed with two distinct elements a and b such that $a^{2}=b^{2}=I$, where I is the group identity. What is the order order of the smallest abelian group containing a, b and I ?

Q3. In the circuit shown below, the capacitor is initially unchanged. Immediately after the key K is closed, the reading in the ammeter is 27 mA .

What will the reading (in $m A$) be a long time later?
Q4. The normalized eigenfunctions and eigenvalues of the Hamiltonian of a Particle confined to move between $0 \leq x \leq a$ in one dimension are

$$
\psi_{n}(x)=\frac{2}{a} \sin \frac{n \pi x}{a} \text { and } E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}
$$

respectively. Here $1,2,3 \ldots$. Suppose the state of the particle is

$$
\psi(x)=A \sin \left(\frac{\pi x}{a}\right)\left[1+\cos \left(\frac{\pi x}{a}\right)\right]
$$

where A is the normalization constant. If the energy of the particle is measured, the probability to get the result as $\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$ is $\frac{x}{100}$. What is the value of x ?

Q7. A person on Earth observes two rockets A and B directly approaching each other with speeds $0.8 c$ and $0.6 c$ respectively. At a time when the distance between the rockets is observed to be $4.2 \times 10^{8} \mathrm{~m}$, the clocks of the rockets and the Earth are synchronized to $t=0 s$. The time of collision (in seconds) of the two rockets as measured in rocket A's frame is $\frac{x}{10}$. What is x ?

Q8. Two parallel rails of a railroad track are insulated from each other and from the ground. The distance between the rails is 1 meter. A voltmeter is electrically connected between the rails. Assume the vertical component of the earth's magnetic field to the 0.2 gauss. What is the voltage developed between the rails when a train travels at a speed of $180 \mathrm{~km} / \mathrm{h}$ along the track? Give the answer in milli-volts.

Q9. Consider a simple pendulum in three dimensional space. It consists of a string length $l=20 \mathrm{~cm}$ and bob mass $m=15 \mathrm{~kg}$ attached to it as shown in the figure below The acceleration due to gravity is downwards as shown in the figure with a magnitude $g=10 \mathrm{~ms}^{-2}$.

$$
g=10 \mathrm{~ms}^{-2}
$$

The pendulum is pulled in the $x-z$ plane to a position where the string makes an angle $\theta=\frac{\pi}{3}$ with the z-axis. It is then released an angular velocity Ω radians per second about the z-axis. What should be the value of Ω in radians per second so that the angle lie siring makes with the z-axis does not change with time?
Q10. Two conductors are embedded in a material of conductivity $10^{-4} \mathrm{ohm}-\mathrm{m}$ and dielectric constant $\in=80 \epsilon_{0}$ The resistance between the two conductors is 10^{6} ohm. What is the capacitance(in $p F$) between the two conductors? Ignore the decimal part of the answer.

PART C (THREE MARKS QUESTIONS)

Q1. An ideal fluid is subjected to a thermodynamic process described by $\rho=C V^{-\alpha}$ and $P=n \rho^{\Gamma}$ where ρ is energy density and P is pressure. For what values of n and Γ the process is adiabatic if the volume is changed slowly?
(a) $\Gamma=\alpha-1, n=1$
(b) $\Gamma=1-\alpha, n=\alpha$
(c) $\Gamma=1, n=\alpha-1$
(d) $\Gamma=\alpha, n=1-\alpha$

Q2. If $y(x)$ satisfies

$$
\frac{d y}{d x}=y\left[1+(\log y)^{2}\right]
$$

and $y(0)=1$ for $x \geq 0$ then $y\left(\frac{\pi}{2}\right)$ is
(a) 0
(b) 1
(c) $\frac{\pi}{2}$
(d) infinity

Q3. A frictionless heat conducting piston of negligible mass and heat capacity divides a vertical, insulated cylinder of height $2 H$ and cross sectional area A into two halves. Each half contains one mole of an ideal gas at temperature T_{0} and pressure P_{0} corresponding to STP. The heat capacity ratio $\gamma=C_{p} / C_{v}$ is given. A load of weight W is tied to the piston and suddenly released. After the system comes to equilibrium, the piston is at rest and the temperatures of the gases in the two compartments are equal. What is the final displacement y of the piston from its initial position, assuming $y W \gg T_{0} C_{v}$?
(a) $\frac{2 H}{\sqrt{\gamma}}$
(b) $H \gamma$
(c) $\frac{H}{\sqrt{\gamma}}$
(d) $\frac{2 H}{\gamma}$

Q14. Consider a wavepacket defined by

$$
\psi(x)=\int_{-\infty}^{\infty} d k f(k) \exp [i(k x)]
$$

Further, $f(k)=0$ for $|k|>\frac{K}{2}$ and $f(k)=a$ for $|k| \leq \frac{K}{2}$. Then, the form of normalized $\psi(x)$ is
(a) $\frac{\sqrt{8 \pi K}}{x} \sin \frac{K x}{2}$
(b) $\sqrt{\frac{2}{\pi K}} \frac{\sin \frac{K x}{2}}{x}$
(c) $\frac{\sqrt{8 \pi K}}{x} \cos \frac{K x}{2}$
(d) $\sqrt{\frac{2}{\pi K}} \frac{\sin \frac{K x}{2}}{x}$

Q15. If $F(x, y)=x^{2}+y^{2}+x y$, its Legendre transformed function $G(u, v)$, upto a multiplicative constant, is
(a) $u^{2}+v^{2}+u v$
(b) $u^{2}+v^{2}-u v$
(c) $u^{2}+v^{2}$
(d) $(u+v)^{2}$

